
HOW TO RELAX

MURATA Makoto

$Id: howToRELAX.sdoc 1.9 2000/08/26 03:12:38 murata Exp $

Contents

I Part 1: RELAX Core 1

1 STEP 0: Introduction 2
1.1 RELAX, brief overview . 2

1.1.1 Comparison with DTD . 2
1.1.2 The RELAX processor . 2
1.1.3 The organization of RELAX 3
1.1.4 About this tutorial . 3

1.2 Summary . 3

2 STEP 1: Migration from XML DTD (without parameter enti-
ties) 4
2.1 An example module . 4
2.2 The module element . 6
2.3 The interface element . 6

2.3.1 The export element . 7
2.4 Element type declarations . 7

2.4.1 Element hedge model . 7
2.4.2 The empty element . 8
2.4.3 The ref element . 8
2.4.4 The choice element . 10
2.4.5 The sequence element . 10
2.4.6 The none element . 11
2.4.7 Datatype reference . 12
2.4.8 Mixed hedge model . 12

2.5 Attribute-list declarations . 14
2.6 Summary . 15

3 STEP 2: Migration from XML DTD (with parameter entities) 16
3.1 Parameter entities used in content models 16

3.1.1 Overview . 16
3.1.2 Permissible hedge models 17
3.1.3 The occurs attribute . 18
3.1.4 Occurrence order of hedgeRef and hedgeRule 19
3.1.5 Illegal reference to itself 19

i

3.1.6 Use of empty . 20
3.1.7 Use of none . 20

3.2 Parameter entities used in attribute-list declarations 21
3.2.1 Overview . 21
3.2.2 Occurrence order of ref and attPool 22
3.2.3 Multiple ref elements . 22
3.2.4 Illegal reference to itself 23

3.3 Summary . 23

4 STEP 3: Datatypes 24
4.1 Datatypes of XML Schema Part 2 24
4.2 Datatypes unique to RELAX . 26

4.2.1 none . 26
4.2.2 emptyString . 26

4.3 Additional constraints . 27
4.3.1 elementRule . 27
4.3.2 attribute . 28

4.4 Summary . 28

5 STEP 4: Annotation 29
5.1 The annotation element . 29

5.1.1 The documentation element 30
5.1.2 The appinfo element . 31

5.2 The div element . 31
5.3 Summary . 33

6 STEP 5: Dividing large modules 34
6.1 Why divide modules? . 34
6.2 The include element . 34
6.3 Non-empty interface elements 36
6.4 Summary . 37

7 STEP 6: Default values, entities, and notations 38
7.1 Reasons that RELAX does not handle them 38
7.2 Using DTD and RELAX together 38
7.3 Better leave them out . 41
7.4 Summary . 41

8 STEP 7: elementRule and hedgeRule, revisited 42
8.1 elementRule and labels . 42

8.1.1 Context-sensitive content models 42
8.1.2 The label attribute of elementRule elements 45
8.1.3 The label attribute of ref elements 46

8.2 Sharing labels . 47
8.2.1 Multiple hedgeRule elements sharing the same label . . . 47

ii

8.2.2 Prohibition of label sharing by hedgeRule and elementRule
48

8.2.3 Multiple elementRule elements sharing the same label . . 49
8.3 Summary . 50

9 STEP 8: tag and attPool, revisited 51
9.1 The role attribute of tag elements 51

9.1.1 Switching content models depending on attribute values . 51
9.1.2 Constraints represented by tag elements 52
9.1.3 The role attribute of elementRule elements 54
9.1.4 Prohibition of references by ref elements 54
9.1.5 The none datatype, revisited 55

9.2 attPool elements . 55
9.2.1 Constraints represented by attPool 56
9.2.2 Prohibition of references by elementRule elements 56

9.3 Prohibition of role sharing by multiple tag or attPool elements 57
9.4 Summary . 58

10 STEP 9: Hedge content model element 60
10.1 Simulating programming languages and database languages . . . 60
10.2 The element element . 61
10.3 Expansion to ref, elementRule, and tag elements 62
10.4 Expansion procedure . 63

10.4.1 Generating ref elements 63
10.4.2 Generating elementRule elements 63
10.4.3 Generating tag elements 63

10.5 Summary . 63

11 STEP 10: tag embedded in elementRule 64
11.1 Describing attributes and hedge models together 64
11.2 Handling of embedded tag elements 66
11.3 Summary . 67

iii

Part I

Part 1: RELAX Core

1

Chapter 1

STEP 0: Introduction

$Id: step0.sdoc 1.10 2000/08/06 08:45:41 murata Exp $
STEP 0 gives a brief overview of RELAX and shows how to read this tutorial.

1.1 RELAX, brief overview

RELAX is a specification for describing XML-based languages. XHTML 1.0,
for example, can be described in RELAX. A description written in RELAX is
called a RELAX grammar.

1.1.1 Comparison with DTD

Compared with a traditional DTD (Document Type Definition), RELAX has
new features as below:

• A RELAX grammar can be written as an XML document.

• RELAX borrows rich datatypes from XML Schema Part 2.

• RELAX is namespace-aware.

1.1.2 The RELAX processor

The RELAX processorverifies XML documents against RELAX grammars. The
input to the RELAX processors is an XML document and a RELAX grammar.
To be precise, the RELAX processor does not directly handle XML documents
and RELAX grammars, but rather receives the output of the XML processor
which handles them.

The RELAX processor reports if the XML document is legitimate against
the RELAX grammar. It may also report some other messages. The RELAX
processor has no other outputs.

2

1.1.3 The organization of RELAX

RELAX consists of RELAX Core and RELAX Namespace. RELAX Core han-
dles elements in a single namespace and their attributes. RELAX Core borrows
datatypes from XML Schema Part 21. RELAX Namespace combines multiple
modules so as to handle multiple namespaces. At present, this tutorial covers
RELAX Core only.

1.1.4 About this tutorial

This tutorial is intended to be very easy to understand. All STEPs except this
one use plenty of examples and provide concrete explanations.

STEPs 1 thru 10 are concerned with RELAX Core. You may stop at the
end of any step and still have a reasonable understanding of RELAX. You can
start to use RELAX immediately after reading STEP 1. If you read through
STEP 6, you will know all the features shared by RELAX and XML DTDs.
All RELAX processors are required to support these features. STEPs 7 thru 10
explain new features of RELAX. RELAX processors are not required to support
these new features.

A little inaccuracy saves tons of explanation. STEPs 1 and 2 are sometimes
inaccurate. Accurate explanations are provided by STEPs 7 and 8.

1.2 Summary

RELAX is very simple. If you are familiar with DTDs, you can be fluent in
RELAX almost immediately. Even if you are not, you can easily master RELAX.
Enjoy and RELAX!

1http://www.w3.org/TR/xmlschema-2/

3

Chapter 2

STEP 1: Migration from
XML DTD (without
parameter entities)

$Id: step1.sdoc 1.13 2000/08/06 08:47:44 murata Exp $
STEP 1 covers basic features, which allow easy migration from DTDs. The

DTD2RELAX converter uses these features only.

2.1 An example module

To provide an idea of RELAX, we will recapture a DTD as a RELAX module.
A DTD is shown below. The number attribute of title elements should be

integers, but DTDs cannot represent this constraint.

<!ELEMENT doc (title, para*)>

<!ELEMENT para (#PCDATA | em)*>

<!ELEMENT title (#PCDATA | em)*>

<!ELEMENT em (#PCDATA)>

<!ATTLIST para

class NMTOKEN #IMPLIED

>

<!ATTLIST title

class NMTOKEN #IMPLIED

number CDATA #REQUIRED

>

4

Next, we show a RELAX module. The number attribute is specified as an
integer.

<module

moduleVersion="1.2"

relaxCoreVersion="1.0"

targetNamespace=""

xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

<interface>

<export label="doc"/>

</interface>

<elementRule role="doc">

<sequence>

<ref label="title"/>

<ref label="para" occurs="*"/>

</sequence>

</elementRule>

<elementRule role="para">

<mixed>

<ref label="em" occurs="*"/>

</mixed>

</elementRule>

<elementRule role="title">

<mixed>

<ref label="em" occurs="*"/>

</mixed>

</elementRule>

<elementRule role="em" type="string"/>

<tag name="doc"/>

<tag name="para">

<attribute name="class" type="NMTOKEN"/>

</tag>

<tag name="title">

<attribute name="class" type="NMTOKEN"/>

<attribute name="number" required="true" type="integer"/>

</tag>

<tag name="em"/>

</module>

5

Subsequent sections explain syntactical constructs appeared in this example.

2.2 The module element

A RELAX grammar is a combination of modules. If the number of namespaces
is one and the grammar is not too large, a module provides a RELAX grammar.
A module is represented by a module element.

<module

moduleVersion="1.2"

relaxCoreVersion="1.0"

targetNamespace=""

xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

...

</module>

The moduleVersion attribute shows the version of this module. In this
example, it is "1.2".

The relaxCoreVersion attribute shows the version of RELAX Core. At
present, it is always "1.0".

The targetNamespace attribute shows the namespace which this module is
concerned with. In this example, it is "".

The namespace name for RELAX Core is "http://www.xml.gr.jp/xmlns/relaxCore".

2.3 The interface element

A module element begins with an interface element. A module has one
interface element.

<module

moduleVersion="1.2"

relaxCoreVersion="1.0"

targetNamespace=""

xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

<interface>

...

</interface>

...

</module>

6

2.3.1 The export element

An interface element contains export element(s).

<export label="foo"/>

The label attribute of export elements specifies an element type that may
become the root. More than one export may appear in an interface element.

The following example allows element type foo and bar as the root.

<interface>

<export label="foo"/>

<export label="bar"/>

</interface>

2.4 Element type declarations

Element type declarations (<!ELEMENT ...>) of XML are represented by
elementRule elements. The role attribute of elementRule specifies an element
type name. More than one elementRule may follow the interface element.

<elementRule role="element-type-name">

...hedge model...

</elementRule>

An elementRule element has a hedge model. A hedge is a sequence of
elements (and their descendants) as well as character data. A hedge model is a
constraint on permissible hedges.

A hedge model is either an element hedge model, datatype reference, or
mixed hedge model.

2.4.1 Element hedge model

Element hedge modelsare represented by empty, none, ref, choice, sequence
elements and the occurs attribute. An element hedge model represents permis-
sible sequences of child elements, which are possibly intervened by whitespace
characters.

7

2.4.2 The empty element

emptyrepresents the empty sequence.
Consider an elementRule as below:

<elementRule role="foo">

<empty/>

</elementRule>

This elementRule implies that the content of a foo element is the empty
sequence. A foo element can be a start tag followed by an end tag, or an
empty-element tag.

<foo/>

<foo></foo>

Unlike EMPTY of XML, whitespace characters may intervene between start
and end tags.

<foo> </foo>

emptycan be used within choice and sequence. The motivation behind this
extension will become clear in STEP 21. If you need exactly the same feature
as EMPTY of XML, use the emptyString datatype (shown in STEP 32).

From now on, we assume that foo, foo1, and foo2 are declared by elementRules
whose hedge models are empty.

2.4.3 The ref element

refreferences to an element type. For example, <ref label="foo"/> refer-
ences to an element type foo.

Consider an elementRule as below:

<elementRule role="bar">

<ref label="foo"/>

</elementRule>

1./step2e.html
2./step3e.html

8

This elementRule implies that the content of a bar element is a foo element.
For example, the next bar element is legitimate against this elementRule.

<bar><foo/></bar>

Whitespace may appear before and after the foo element.

<bar>

<foo/>

</bar>

refcan have the occurs attribute. Permissible values are ”*”, ”+”, and
”?” , which indicate ”zero or more”, ”one or more”, and ”zero or one time”,
respectively.

An example of ”?” as the occurs attribute is as below:

<elementRule role="bar">

<ref label="foo" occurs="?"/>

</elementRule>

This elementRule implies that the content of a bar element is either a foo
or empty.

<bar><foo/></bar>

<bar></bar>

Whitespace characters may appear before and after the foo element. Even
when this bar is empty, it may have whitespace characters.

<bar>

<foo/>

</bar>

<bar>

</bar>

9

2.4.4 The choice element

choiceindicates a choice of the specified hedge models (”|” of XML 1.0). Sub-
ordinate elements of choice elements are element hedge models. choice can
also have the occurs attribute.

An example of elementRule containing choice is shown below:

<elementRule role="bar">

<choice occurs="+">

<ref label="foo1"/>

<ref label="foo2"/>

</choice>

</elementRule>

This elementRule indicates that the content of a bar element is one or more
occurrences of either foo1 or foo2 elements.

<bar><foo2/></bar>

<bar>

<foo2/>

</bar>

<bar>

<foo1/>

<foo2/>

<foo1/>

</bar>

2.4.5 The sequence element

sequenceis a sequence of the specified hedge models. (”,” of XML 1.0). Sub-
ordinate elements of sequence are element hedge models. sequence can also
have the occurs attribute.

An example of elementRule containing sequence is shown below:

<elementRule role="bar">

<sequence occurs="?">

<ref label="foo1"/>

<ref label="foo2"/>

</sequence>

</elementRule>

10

This elementRule implies that the content of a bar element is either a
sequence of a foo1 element and a foo2 element, or empty.

<bar><foo1/><foo2/></bar>

<bar>

<foo1/>

<foo2/></bar>

<bar/>

<bar></bar>

<bar>

</bar>

2.4.6 The none element

noneis an element hedge model, which does not match anything. none is unique
to RELAX.

<elementRule role="bar">

<none/>

</elementRule>

This elementRule implies that nothing is permitted as the content of bar
elements. The motivation behind none will become clear in STEP 23.

3./step2e.html

11

2.4.7 Datatype reference

The type attribute of elementRule allows a content model that references to
a datatype. Character strings in a document are compared with the specified
datatype. Permissible datatypes are built-in datatypes of XML Schema Part 2,
or datatypes unique to RELAX. Details of datatypes will be covered by STEP
34.

An example of elementRule containing type is shown below:

<elementRule role="bar" type="integer"/>

This elementRule indicates that the content of a bar element is a character
string representing an integer.

<bar>10</bar>

Whitespace characters may not occur before or after the integer. For exam-
ple, the following is not permitted.

<bar>

10

</bar>

2.4.8 Mixed hedge model

mixedsignificantly extends mixed content models (#PCDATA|a|b|...|z)* of XML.
A mixed element wraps an element hedge model. Recall that an element

hedge model allows whitespace characters to intervene between elements. By
wrapping it with mixed, any character is allowed to intervene.

(#PCDATA | foo1| foo2)*of XML can be captured as below:

<elementRule role="bar">

<mixed>

<choice occurs="*">

<ref label="foo1"/>

<ref label="foo2"/>

</choice>

</mixed>

</elementRule>

4./step2e.html

12

The choice element in this mixed element matches zero or more occurrences
of foo1 or foo2 elements. The mixed allows any character to intervene between
these elements. Thus, this hedge model is equivalent to a (#PCDATA | foo1|
foo2)* mixed content model of XML 1.0.

There are two ways to capture a (#PCDATA) content model. One is to ref-
erence to the datatype string by the type attribute. The other is to make an
element hedge model that matches the empty sequence only and wrap it with
mixed.

<elementRule role="bar" type="string"/>

<elementRule role="bar">

<mixed>

<empty/>

</mixed>

</elementRule>

As a more advanced example, consider elementRule as below:

<elementRule role="bar">

<mixed>

<sequence>

<ref label="foo1"/>

<ref label="foo2"/>

</sequence>

</mixed>

</elementRule>

A sequence of <foo/> and <foo2/> matches ref in the mixed element.
Thus, the following example is permitted by this elementRule.

<bar>Murata<foo1/>Makoto<foo2/>IUJ</bar>

As shown in the following example, CDATA sections and character references
may appear.

<bar><![CDATA[Murata]]><foo1/>Makoto<foo2/>IUJ</bar>

13

2.5 Attribute-list declarations

Attribute-list declarations (<!ATTLIST ...>) of XML are captured by tag
elements.

<tag name="element-type-name">

...list of attribute declarations...

</tag>

tagcan have attribute elements as subordinates.

<tag name="element-type-name">

<attribute ... />

<attribute ... />

</tag>

attributedeclares an attribute. An example of attribute is shown below:

<attribute name="age" required="true" type="integer"/>

The value of the name attribute is the name of the declared attribute. In
this example, it is age.

If the value of the required attribute is true, the attribute being declared
is mandatory. If required is not specified, it is optional. Since required is
specified in this example, the age attribute is mandatory.

The type attribute specifies a datatype name. If type is not specified, a
datatype string (which allows any string) is assumed.

Consider an example of tag which contains this attribute element only.

<tag name="bar">

<attribute name="age" required="true" type="integer"/>

</tag>

The following start tag is permitted by this tag.

<bar age="39">

The following two start tags are not permitted. In the first example, the age
attribute is omitted. In the second example, the value of age is not an integer.

14

<bar>

<bar age="bu huo">

<!-- "bu huo" means forty years in Chinese. In Japan,

it is pronounced as "FUWAKU". -->

In DTD, you do not have to write an attribute-list declaration if an element
type does not have any attributes. In RELAX, you must write an empty tag
element even if there are no attributes. For example, if an element type bar
does not have any attributes, you have to write a tag element as below:

<tag name="bar"/>

2.6 Summary

If you have finished reading this STEP, you can immediately start to use RE-
LAX. If you do not need further features, you do not have to read other STEPs.
Enjoy and RELAX!

15

Chapter 3

STEP 2: Migration from
XML DTD (with parameter
entities)

$Id: step2.sdoc 1.10 2000/11/01 13:41:12 murata Exp $
Often, you have to write the same thing many times. Features in STEP

2 allow you to create a description once and reference to it repeatedly. These
features mimic parameter entities of XML.

3.1 Parameter entities used in content models

hedgeRuleallows you to write a hedge model once, name it, and reference to
it repeatedly. In other words, hedgeRule mimics parameter entities referenced
from content models in DTD.

3.1.1 Overview

The syntax of hedgeRule is shown below. foo is a name assigned to the hedge
model of this hedgeRule.

<hedgeRule label="foo">

...element content model...

</hedgeRule>

To reference to such a hedgeRule, we write <hedgeRef label="foo"/>.
This hedgeRef is replaced with the element hedge model specified in the hedgeRule.

In the following example, the hedge model of the elementRule for the ele-
ment type doc references to a hedgeRule. This elementRule is borrowed from

16

the module in the beginning of STEP 11, and the hedge model minus title is
rewritten by a hedgeRule.

<hedgeRule label="doc.body">

<ref label="para" occurs="*"/>

</hedgeRule>

<elementRule role="doc">

<sequence>

<ref label="title"/>

<hedgeRef label="doc.body"/>

</sequence>

</elementRule>

The reference to doc.body is expanded as below:

<elementRule role="doc">

<sequence>

<ref label="title"/>

<ref label="para" occurs="*"/>

</sequence>

</elementRule>

In this example, a hedgeRule is referenced from an elementRule. But a
hedgeRule may reference to another hedgeRule.

3.1.2 Permissible hedge models

hedgeRulecan have element hedge models only. Datatype references or mixed
hedge models are not permitted. For example, the following rules are not per-
mitted.

<hedgeRule label="mixed.param">

<mixed>

<choice occurs="*">

<ref label="em"/>

<ref label="strong"/>

<choice>

</mixed>

</hedgeRule>

<hedgeRule label="string.param" type="string"/>

1./step1.html

17

If you want to use hedgeRef in conjunction with a mixed hedge model, you
have to surround the hedgeRef with mixed in an elementRule element, rather
than using the mixed element inside a hedgeRule element. An example is shown
below. The mixed hedge model references to phrase, and phrase is described
by a hedgeRule.

<hedgeRule label="phrase">

<choice>

<ref label="em"/>

<ref label="strong"/>

<choice>

</hedgeRule>

<elementRule role="p">

<mixed>

<hedgeRef label="phrase" occurs="*"/>

</mixed>

</elementRule>

3.1.3 The occurs attribute

hedgeRefthat references to a parameter entity can have occurs, and an element
hedge model specified in hedgeRule can also have occurs. In the following
example, both have occurs.

<hedgeRule label="bar">

<sequence occurs="+" >

<ref label="foo1"/>

<ref label="foo2"/>

</sequence>

</hedgeRule>

<elementRule role="foo">

<hedgeRef label="bar" occurs="*"/>

</elementRule>

If this example is recaptured in DTD, expansion of the parameter entity bar
is obvious.

<!ENTITY % bar "(foo1, foo2)+">

<!-- original --> <!ELEMENT foo (%bar;)*>

<!-- expanded --> <!ELEMENT foo ((foo1, foo2)+)*>

18

The following shows expansion of the above example. Observe that a choice
element containing a single child is introduced during expansion. This choice
element inherits occurs="*" from the ref.

<elementRule role="foo">

<choice occurs="*">

<sequence occurs="+" >

<ref label="foo1"/>

<ref label="foo2"/>

</sequence>

</choice>

</elementRule>

3.1.4 Occurrence order of hedgeRef and hedgeRule

Unlike parameter entities of DTD, hedgeRule does not have to precede ref that
reference to it. For example, the following is not an error.

<elementRule role="doc">

<sequence>

<ref label="title"/>

<hedgeRef label="doc.body"/>

</sequence>

</elementRule>

<hedgeRule label="doc.body">

<ref label="para" occurs="*"/>

</hedgeRule>

3.1.5 Illegal reference to itself

hedgeRulemay not reference to itself directly or indirectly. The follow is an
error since the hedge model for bar references to bar itself.

<hedgeRule label="bar">

<choice>

<ref label="title"/>

<hedgeRef label="bar" occurs="*"/>

</choice>

</hedgeRule>

19

In the following example, the hedge model for bar1 references to bar2 and
the hedge model for bar2 references to bar1. Thus, there is an error.

<hedgeRule label="bar1">

<hedgeRef label="bar2" occurs="*"/>

</hedgeRule>

<hedgeRule label="bar2">

<choice>

<ref label="title"/>

<hedgeRef label="bar1"/>

</choice>

</hedgeRule>

3.1.6 Use of empty

empty, shown in STEP 12, is typically used in hedgeRule. An example is as
below:

<hedgeRule label="frontMatter">

<empty/>

</hedgeRule>

<elementRule role="section">

<sequence>

<ref label="title"/>

<hedgeRef label="frontMatter"/>

<ref label="para" occurs="*"/>

</sequence>

</elementRule>

Users of this module can change the structure of section by customizing
the description of frontMatter.

3.1.7 Use of none

none, shown in STEP 13, is also used in hedgeRule. An example is as below:

2./step1.html
3./step1.html

20

<hedgeRule label="local-block-class">

<none/>

</hedgeRule>

<hedgeRule label="block-class">

<choice>

<ref label="para"/>

<ref label="fig"/>

<hedgeRef label="local-black-class"/>

</choice>

</hedgeRule>

Users of this module can change the structure of block-class by customiz-
ing the description of local-block-class.

3.2 Parameter entities used in attribute-list dec-
larations

attPoolallows you to declare attributes once and reference to the declarations
repeatedly. In other words, attPool mimics parameter entities referenced from
attribute-list declarations.

3.2.1 Overview

The syntax of attPool is shown below. foo is a name of a parameter entity.

<attPool role="foo">

...attribute definitions...

</attPool>

To reference to such an attPool, we write <ref role="foo"/> before at-
tribute declarations. This ref is replaced with attribute declarations specified
in the attPool.

In the following example, a tag for the element type title references to
attPool. This tag is borrowed from the module in the beginning of STEP 14

and rewritten. The role attribute, which is common to many element types, is
described by attPool named common.att.

<attPool role="common.att">

<attribute name="class" type="NMTOKEN"/>

</attPool>

4./step1.html

21

<tag name="title">

<ref role="common.att"/>

<attribute name="number" required="true" type="integer"/>

</tag>

This ref is expanded as below:

<tag name="title">

<attribute name="class" type="NMTOKEN"/>

<attribute name="number" required="true" type="integer"/>

</tag>

In this example, attPool is referenced from tag, but it can also be referenced
from attPool.

3.2.2 Occurrence order of ref and attPool

Unlike parameter entities of DTD, attPool does not have to precede ref that
reference to it. For example, the following is not an error.

<tag name="title">

<ref role="common.att"/>

<attribute name="number" required="true" type="integer"/>

</tag>

<attPool role="common.att">

<attribute name="role" type="NMTOKEN"/>

</attPool>

3.2.3 Multiple ref elements

A single tag or attPool may contain more than one ref element. In the
following example, an attPool element references to more than one ref element.
Required attributes are grouped as common-req.att and optional attributes
are grouped as common-opt.att. These two are referenced from the attPool
element for common.att.

<attPool role="common.att">

<ref role="common-req.att"/>

<ref role="common-opt.att"/>

</attPool>

<attPool role="common-req.att">

22

<attribute name="role" type="NMTOKEN" required="true"/>

</attPool>

<attPool role="common-opt.att">

<attribute name="id" type="NMTOKEN"/>

</attPool>

3.2.4 Illegal reference to itself

As in the case of hedgeRule, a direct or indirect reference to itself is an error.
For example, the following is an error.

<attPool role="bar1">

<ref role="bar2"/>

<attribute name="id" type="NMTOKEN"/>

</attPool>

<attPool role="bar2">

<ref role="bar1"/>

</attPool>

3.3 Summary

STEP 2 covers almost all features of XML DTD. Enjoy and RELAX!

23

Chapter 4

STEP 3: Datatypes

$Id: step3.sdoc 1.10 2000/08/26 03:14:38 murata Exp $
STEP 3 introduces datatypes.

4.1 Datatypes of XML Schema Part 2

XML Schema Part 21introduces many built-in datatypes. They are designed
so that other specifications can utilize them. RELAX borrows all these built-in
datatypes.

Some of the built-in datatypes of XML Schema Part 2 are borrowed from
XML DTD; the others are newly introduced. Those borrowed from XML DTD
are shown as below:

• NMTOKEN

• NMTOKENS

• ID

• IDREF

• IDREFS

• ENTITY

• ENTITIES

• NOTATION

Next, built-in datatypes newly introduced by XML Schema Part 2 are shown
below:

• string
1http://www.w3.org/TR/xmlschema-2/

24

• boolean

• float

• double

• decimal

• timeDuration

• recurringDuration

• binary

• uriReference

• QName

• language

• Name

• NCName

• integer

• nonPositiveInteger

• negativeInteger

• long

• int

• short

• byte

• nonNegativeInteger

• unsignedLong

• unsignedInt

• unsignedShort

• unsignedByte

• positiveInteger

• timeInstant

• time

• timePeriod

25

• date

• month

• year

• century

• recurringDate

• recurringDay

In XML Schema Part 2, when users reference to these built-in datatypes,
users can further specify constraints such as value ranges. The same thing
applies to RELAX. However, unlike XML Schema Part 2, RELAX does not
allow users to define their own datatypes.

4.2 Datatypes unique to RELAX

Datatypes unique to RELAX are none and emptyString.

4.2.1 none

noneis an empty datatype. No character strings belong to this datatype. RE-
LAX uses none so as to prohibit attributes. In the following example, the class
attribute is prohibited.

<tag name="p">

<attribute name="class" type="none"/>

</tag>

Thus, the following start tag is not permitted.

<p class="foo">

4.2.2 emptyString

emptyStringis a datatype that allows the empty string only. This datatype is
compatible with EMPTY of DTD.

<elementRule role="em" type="emptyString"/>

26

This elementRule allows the following two elements only. Whitespace char-
acters may not occur between and .

4.3 Additional constraints

Like XML Schema Part 2, RELAX allows users to specify additional constraints
on datatypes. For example, users can specify integer and further specify a
constraint ”18 thru 65”. The syntax for such additional constraints is the same
as in XML Schema Part 2.

4.3.1 elementRule

To impose constraints on a datatype specified by elementRule, attach child
elements to the elementRule.

In the following example, the hedge model for the element type age is a
reference to integer. minInclusive and maxInclusive represent constraints
on minimum and maximum values, respectively. Thus, permissible contents of
age elements are character strings representing integers from 18 to 65.

<elementRule role="age" type="integer">

<minInclusive value="18"/>

<maxInclusive value="65"/>

</elementRule>

A age element can contain string ”20” as its content.

<age>20</age>

But string ”11” is not allowed.

<age>11</age>

27

4.3.2 attribute

To impose constraints on a datatype specified by attribute, attach child ele-
ments to attribute.

In the following example, the sex attribute of employee is constrained to
be either man or woman. Here, enumeration is a constraint which specifies a
permissible value.

<tag name="employee">

<attribute name="sex" type="NMTOKEN">

<enumeration value="man"/>

<enumeration value="woman"/>

</attribute>

</tag>

The sex attribute can have the string "man".

<employee sex="man"/>

But it cannot contain the string "foo".

<employee sex="foo"/>

4.4 Summary

STEP 3 provides more than enough features to play with. Enjoy and RELAX!

28

Chapter 5

STEP 4: Annotation

$Id: step4.sdoc 1.12 2000/11/01 13:43:29 murata Exp $
DTD documentation is highly important. Since DTDs merely define syntac-

tical constructs, plenty of annotations in natural languages are required so as to
explain the intended semantics of these constructs. Although XML comments
are always available, such comments will be ignored by browsers which parse
and then display RELAX modules.

STEP 4 provides features for annotating RELAX modules. Since they are
represented by elements and attributes, browsers which parse RELAX modules
can show annotations in a user-friendly manner.

5.1 The annotation element

The top-level element for annotations is the annotation element. annotation
may occur in the following places.

• at most once before the interface element

• at most once in an export element

• at most once as the eldest child of each elementRule

• at most once as the eldest child of each hedgeRule

• at most once as the eldest child of each tag

• at most once as the eldest child of each attPool

• at most once as the eldest child of each attribute

• at most once as the child of each include

• at most once as the eldest child of each element

• at most once as the eldest child of each div

29

The elementRule element shown below has an annotation as its eldest child.
The content of this annotation is omitted.

<elementRule role="para">

<annotation> ... </annotation>

<mixed>

<ref label="fnote" occurs="*"/>

</mixed>

</elementRule>

Child elements of an annotation element are documentation elements and
appinfo elements.

5.1.1 The documentation element

documentationis an element for representing explanations in natural languages.
Since RELAX Namespace is not available yet, documentation may contain text
data only.

The following shows a documentation element added to the above example.

<elementRule role="para">

<annotation>

<documentation>This is a paragraph.</documentation>

</annotation>

<mixed>

<ref label="fnote" occurs="*"/>

</mixed>

</elementRule>

If a documentation element has the source attribute, the attribute value is a
URI that references to an explanation. In this case, the content of documentation
is not used. Browsers for modules typically use this URI to provide a link.

<elementRule role="para">

<annotation>

<documentation source="http://www.xml.gr.jp/relax/"/>

</annotation>

<mixed>

<ref label="fnote" occurs="*"/>

</mixed>

</elementRule>

If a documentation element has the xml:lang attribute, the attribute value
announces the natural language in which the content of the documentation is
written.

In the next example, ”en” is specified as the value of xml:lang.

30

<elementRule role="para">

<annotation>

<documentation xml:lang="en">This is a paragraph.</documentation>

</annotation>

<mixed>

<ref label="fnote" occurs="*"/>

</mixed>

</elementRule>

5.1.2 The appinfo element

Other than verifiers, which examine documents against RELAX modules, many
programs might handle RELAX modules. For example, some programs may
create a database schema from a module. appinfo provides hidden information
for such programs. Since RELAX Namespace is not available yet, appinfo may
contain text data only.

<elementRule role="foo" type="integer">

<annotation><appinfo>default:1</appinfo></annotation>

</elementRule>

If an appinfo element has the source attribute, the attribute value is a URI
that references to hidden information. In this case, the content of appinfo is
not used.

5.2 The div element

We often would like to annotate a collection of elementRules, hedgeRules,
tags, and attPools. The div element allows such an annotated group.

divelements may occur in module elements as siblings of elementRules,
hedgeRules, tags, and attPools. div elements may further contain div ele-
ments. A div element may contain elementRules, hedgeRules, tags, attPools,
and divs.

The following is a module shown in STEP 1. It is annotated after introducing
div elements.

<module

moduleVersion="1.2"

relaxCoreVersion="1.0"

targetNamespace=""

xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

<interface>

<export label="doc"/>

31

</interface>

<div>

<annotation>

<documentation>The root node</documentation>

</annotation>

<elementRule role="doc">

<sequence>

<ref label="title"/>

<ref label="para" occurs="*"/>

</sequence>

</elementRule>

<tag name="doc"/>

</div>

<div>

<annotation>

<documentation>Paragraphs</documentation>

</annotation>

<elementRule role="para">

<mixed>

<ref label="em" occurs="*"/>

</mixed>

</elementRule>

<tag name="para">

<attribute name="class" type="NMTOKEN"/>

</tag>

</div>

<elementRule role="title">

<mixed>

<ref label="em" occurs="*"/>

</mixed>

</elementRule>

<tag name="title">

<attribute name="class" type="NMTOKEN"/>

<attribute name="number" required="true" type="integer"/>

</tag>

<elementRule role="em" type="string"/>

<tag name="em"/>

</module>

32

5.3 Summary

STEP 4 makes it easy to document your module. Enjoy and RELAX!

33

Chapter 6

STEP 5: Dividing large
modules

$Id: step5.sdoc 1.7 2000/04/14 12:40:02 murata Exp $
Large modules are hard to maintain. STEP 5 introduces a mechanism for

dividing a module into several pieces, which can be maintained easier.

6.1 Why divide modules?

Suppose that we rewrite a DTD containing 200 element types in RELAX. This
size is fairly large, but is not uncommon. For each element type, RELAX needs
an elementRule and a tag. If each elementRule and tag requires three lines,
the total is 1200 lines. If we write extensive documentation, the total may
become 3000 lines or even more. This size is too large to put in a single file.

Even DTD provides external parameter entities so as to divide large DTDs
into modules and maintain each module independently. RELAX strongly re-
quires some mechanism for dividing large modules.

6.2 The include element

In RELAX, a module can reference to another module by the include element.
The include element is replaced with the content of the referenced module.

Let us examine an example of include. First, a module to be included is as
below:

<module

moduleVersion="1.2"

relaxCoreVersion="1.0"

targetNamespace=""

xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

34

<interface/>

<elementRule role="bar" type="emptyString"/>

<tag name="bar"/>

</module>

This module contains an elementRule and tag for the element type bar.
The interface element is empty. Suppose that this module is stored in bar.rlx.

Next, a module which references to and includes this module is as below:

<module

moduleVersion="1.2"

relaxCoreVersion="1.0"

targetNamespace=""

xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

<interface>

<export label="foo"/>

</interface>

<elementRule role="foo">

<ref label="bar"/>

</elementRule>

<tag name="foo"/>

<include moduleLocation="bar.rlx" />

</module>

This module contains an elementRule and tag for the element type foo.
The include at the end of this this module references to bar.rlx via the
moduleLocation attribute.

The include element is replaced by the body of the referenced module,
which the content of the module element except the interface element. In this
example, replacement is done as below:

<module

moduleVersion="1.2"

relaxCoreVersion="1.0"

targetNamespace=""

xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

35

<interface>

<export label="foo"/>

</interface>

<elementRule role="foo">

<ref label="bar"/>

</elementRule>

<tag name="foo"/>

<elementRule role="bar" type="emptyString"/>

<tag name="bar"/>

</module>

6.3 Non-empty interface elements

In the above example, the interface element of the referenced module is empty.
Suppose that an export element is supplied in the interface element.

<module

moduleVersion="1.2"

relaxCoreVersion="1.0"

targetNamespace=""

xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

<interface>

<export label="bar"/>

</interface>

<elementRule role="bar" type="emptyString"/>

<tag name="bar"/>

</module>

In this case, the children of the interface element in the referenced mod-
ule are attached to the interface element in the referencing module. In this
example, the result of replacement is as below:

<module

moduleVersion="1.2"

relaxCoreVersion="1.0"

targetNamespace=""

36

xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

<interface>

<export label="foo"/>

<export label="bar"/>

</interface>

<elementRule role="foo">

<ref label="bar"/>

</elementRule>

<tag name="foo"/>

<elementRule role="bar" type="emptyString"/>

<tag name="bar"/>

</module>

6.4 Summary

STEP 5 makes it easy to maintain large modules. Enjoy and RELAX!

37

Chapter 7

STEP 6: Default values,
entities, and notations

$Id: step6.sdoc 1.9 2000/11/01 13:45:32 murata Exp $
Among the features of DTD, we have not covered default values, entities,

and notations. STEP 6 is concerned with them.

7.1 Reasons that RELAX does not handle them

RELAX does not handle default values, entities, and notations. They are in-
tentionally omitted from RELAX so that we can continue to use existing XML
processors.

Suppose that RELAX introduced constructs for these features. For example,
assume that RELAX had the default attribute which provides the default value
of an attribute. Existing XML processors will not examine RELAX modules
when they parse XML documents. Thus, they will not use default. The
same thing applies to entities and notations: even if RELAX had constructs for
declaring entities and notations, existing XML processors would not use them.

If we would like to introduce such features to RELAX, the only solution
is to create RELAX-specific XML parsers. Those users who create and verify
XML documents against RELAX grammars would certainly have to use such
RELAX-specific XML parsers. Furthermore, those users who receive such XML
documents would have to switch to RELAX-specific XML parsers. In our opin-
ion, this is not very realistic.

7.2 Using DTD and RELAX together

Then, are we unable to use default values, entities, and notations? No, we can
use these features if we use DTD and RELAX together.

The following is an XML document containing a DTD.

38

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE person [

<!ATTLIST person

bloodType CDATA "A">

]>

<person/>

This document is verified against a RELAX module as below:

<module

moduleVersion="1.0"

relaxCoreVersion="1.0"

xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

<interface>

<export label="person"/>

</interface>

<elementRule role="person">

<empty/>

</elementRule>

<tag name="person">

<attribute name="bloodType">

<enumeration value="O"/>

<enumeration value="A"/>

<enumeration value="B"/>

<enumeration value="AB"/>

</attribute>

</tag>

</module>

In this example, the DTD specifies the default value ”A”. XML processors
do use this default. We can verify this XML document against the RELAX
module without any problems. Verification is done as if ”A” was specified as
the attribute value.

Similarly, entities and notations can be described in DTD. First, we show
an example of parsed entities.

<?xml version="1.0"?>

<!DOCTYPE doc [

<!ENTITY foo "This is a pen">

]>

<doc>

<para>&foo;</para>

</doc>

39

This document is legitimate against the RELAX module as below:

<module

moduleVersion="1.0"

relaxCoreVersion="1.0"

xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

<interface>

<export label="doc"/>

</interface>

<elementRule role="doc">

<ref label="para" occurs="*"/>

</elementRule>

<elementRule role="para" type="string"/>

<tag name="doc"/>

<tag name="para"/>

</module>

Next, we show an example of unparsed entities and notations.

<?xml version="1.0"?>

<!DOCTYPE doc [

<!NOTATION eps PUBLIC

"-//ISBN 0-7923-9432-1::Graphic Notation//NOTATION Adobe Systems

Encapsulated Postscript//EN">

<!ENTITY logo_eps SYSTEM "logo.eps" NDATA eps>

<!ELEMENT doc EMPTY>

<!ATTLIST doc logo ENTITY #IMPLIED>

]>

<doc logo="logo_eps"/>

This document is legitimate against the following RELAX module.

40

<module

moduleVersion="1.0"

relaxCoreVersion="1.0"

xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

<interface>

<export label="doc"/>

</interface>

<elementRule role="doc" type="emptyString"/>

<tag name="doc">

<attribute name="logo" type="ENTITY"/>

</tag>

</module>

7.3 Better leave them out

As we have seen in the previous section, we can use default values, entities, and
notations by using DTD and RELAX together. Their use is not recommended,
however.

Default values can be mimicked by application programs. We only have to
hardcode ”default values” in application programs and use them when attributes
are absent. We can also write XSLT scripts so as to embed ”default values”
when attributes are absent.

Use links (especially, XLink) rather than external parsed entities or external
unparsed entities. Links are much more appropriate for the WWW.

Internal parsed entities can be used without any problems, however. Some
text data such as ”<” can be best represented by internal parsed entities (e.g.,
<).

Unfortunately, default values, entities, and notations in DTD are not always
processed as expected by casual users. This is because some XML processors
do not fetch external DTD subsets or external parameter entities. However, all
examples in this STEP use internal DTD subsets and thus are free from such
unexpected results.

7.4 Summary

STEPs 1 thru 6 provide more than enough features for the migration from DTD
to RELAX. As long as we use these features only, we can convert RELAX to
DTD and vice versa without loss of information except for datatypes and facets.
In the future, conversion between XML Schema should be possible. Enjoy and
RELAX!

41

Chapter 8

STEP 7: elementRule and
hedgeRule, revisited

$Id: step7.sdoc 1.13 2000/08/26 08:37:11 murata Exp $
Until this step, we have covered those features of elementRule and hedgeRule

which can be easily understood by DTD authors. Actually, RELAX has a much
more generalized framework.

8.1 elementRule and labels

An elementRule element can have the label attribute. We first consider
underlying requirements and then introduce this attribute.

8.1.1 Context-sensitive content models

We often would like to attach different content models to the same tag name,
depending on the context. As an example, consider paragraphs in sections and
those in tables. Permissible subordinates of these two types of paragraphs are
slightly different; we might want to allow paragraphs in sections to contain
footnotes, but might want to allow those in tables to contain text only.

<!-- This example is legal. -->

<section>

<para>This paragraph can contain footnotes <footnote>This

is a footnote</footnote>.</para>

</section>

42

<!-- This example is illegal. -->

<table>

...

<para>This paragraph cannot contain a footnote <footnote>This

is an illegal footnote</footnote>.</para>

...

</table>

Thus, we would like to switch content models (shown below) depending on
whether paragraphs occur in sections or tables.

<!-- Case 1: subordinate to <section> elements. -->

<!ELEMENT para (#PCDATA|footnote)*>

<!-- Case 2: subordinate to <table> elements. -->

<!ELEMENT para (#PCDATA)>

A good motivation for context-sensitive content models can be found in
HTML. In HTML, an a element may not occur as a direct or indirect subordinate
of another a element. The same situation is true of the form element, as well;
a form element may not occur inside another form element.

<!-- This example is illegal. -->

dmy

<!-- This example is also illegal. -->

<form>

...

<div>

<form>

...

</form>

</div>

...

</form>

In HTML, a elements can contain span elements. Since we would like to
prohibit even indirect nesting, we have to allow those span elements outside
of a elements to contain a elements and do not allow those in a elements to
contain span elements. The same thing applies to form; we have to allow those
div elements outside of form elements to contain form elements and do not
allow those in form elements to contain form elements.

43

<!-- Case 1: subordinate to <a> elements. -->

<!ELEMENT span (#PCDATA|a)*>

<!-- Case 2: not subordinate to <a> elements. -->

<!ELEMENT span (#PCDATA)>

However, the DTD formalism allows only one content model per tag name.
Thus, we cannot use different content models for paragraphs in different con-
texts. span may have only one content model; we cannot switch content models
depending on whether the span element appears in some a element. The same
thing applies to div.

Historically, two approaches have been used to overcome this problem. One
is to introduce different tag names for different contexts. The following ex-
ample illustrates this approach. Paragraphs in sections have the tag name
paraInSection, and those in tables have the tag name paraInTable.

<!ELEMENT paraInSection (#PCDATA|footnote)*>

<!ELEMENT paraInTable (#PCDATA)>

<!-- This example is legal. -->

<section>

<paraInSection>This paragraph can contain footnotes <footnote>This

is a footnote</footnote>.</paraInSection>

</section>

<table>

...

<paraInTable>This paragraph cannot contain a footnote.</paraInTable>

...

</table>

This approach causes a flood of similar tag names: we have to duplicate tag
name sets for common constructs such as paragraphs, footnotes, itemized lists,
etc.

Instead of introducing more than one tag name for each construct, another
approach creates a loose content model by merging different content models for
different contexts. The following example illustrates this approach. Not only
paragraphs in sections but those in tables are allowed to contain subordinate
footnotes.

44

<!ELEMENT para (#PCDATA|footnote)*>

This approach causes loose validation. The following example validates
against the above example.

<!-- This example is illegal. -->

<table>

...

<para>This paragraph cannot contain a footnote <footnote>This

is an illegal footnote</footnote>.</para>

...

</table>

8.1.2 The label attribute of elementRule elements

For a single tag name to have different content models depending on contexts,
RELAX introduces labels. A single tag name associated with different labels
can have different hedge models.

An elementRule can have the label attribute. A form of elementRule is
as below:

<elementRule role="name" label="label">

...content model...

</elementRule>

If the label attribute is omitted, the value of the role attribute is used.
Thus, the following elementRules are equivalent.

<elementRule role="foo">

...content model...

</elementRule>

<elementRule role="foo" label="foo">

...content model...

</elementRule>

For paragraphs containing footnotes and paragraphs not containing foot-
notes, the following example uses different labels and thus different content
models.

45

<elementRule role="para" label="paraWithFNotes">

<mixed>

<ref label="footnote" occurs="*"/>

</mixed>

</elementRule>

<elementRule role="para" label="paraWithoutFNotes">

<mixed>

<empty/>

<mixed/>

</elementRule>

<tag name="para"/>

The first elementRule show that paragraphs of the paraWithFNotes label
contain text and footnotes. The second elementRule show that paragraphs of
the paraWithoutFNotes label contain text only.

In most cases, there is one to one correspondence between labels and tag
names. In fact, in all examples until this STEP, a tag name has only one
associated label. To address issues presented in the previous subsection, we
have to associate more than one label with a single tag name.

8.1.3 The label attribute of ref elements

Next, we revisit the label attribute of ref elements. Values of this attribute
are always labels. STEP 1 explained that values are element type names, but
that explanation is a white lie. RELAX does not have element types. (To tell
the truth, XML 1.0 does not define element types. Element type declarations
are defined, but element types are never defined.)

Since paraWithFNotes and paraWithoutFNotes in the last example in the
previous section are labels, they can be referenced by ref elements. Content
models for sections reference to paraWithFNotes, while those for tables (to be
precise, table cells) reference to paraWithoutFNotes.

<elementRule role="section">

<ref label="paraWithFNotes" occurs="*"/>

</elementRule>

<elementRule role="cell">

<ref label="paraWithoutFNotes" occurs="*"/>

</elementRule>

46

8.2 Sharing labels

8.2.1 Multiple hedgeRule elements sharing the same label

More than one hedgeRule can specify the same label for the label attribute.
In the following example, there are two hedgeRules for the blockElem label.

<hedgeRule label="blockElem">

<ref label="para"/>

</hedgeRule>

<hedgeRule label="blockElem">

<ref label="itemizedList"/>

</hedgeRule>

The following elementRule references to this blockElem.

<elementRule role="doc">

<sequence>

<ref label="title"/>

<hedgeRef label="blockElem" occurs="*"/>

</sequence>

</elementRule>

On validation against RELAX grammars, hedgeRef are first expanded. We
use this hedgeRef as an example to demonstrate such expansion.

Both of the hedgeRules describing the blockElem label have ref elements as
hedge models. By grouping them with a choice element, we have the following.

<choice>

<ref label="para"/>

<ref label="itemizedList"/>

</choice>

The hedgeRef we intend to expand specifies * as the occurs attribute. We
copy this attribute to the choice element.

<choice occurs="*">

<ref label="para"/>

<ref label="itemizedList"/>

</choice>

Finally, we replace the hedgeRef with this choice element.

47

<elementRule role="doc">

<sequence>

<ref label="title"/>

<choice occurs="*">

<ref label="para"/>

<ref label="itemizedList"/>

</choice>

</sequence>

</elementRule>

Let us summarize the procedure for expanding a hedgeRef element refer-
encing to some label.

1. Locate all hedgeRules for this label.

2. Group hedge models of these hedgeRules with a choice element.

3. Copy the occurs attribute of the hedgeRef to this choice element.

4. Replace the hedgeRef with this choice element.

Since multiple hedgeRules are allowed to share a label, we are not forced to
write a single hedgeRule. For example, if we would like to add numberedItemizedList
as another sort of blockElem, we only have to add the following hedgeRule; we
do not have to modify other hedgeRules.

<hedgeRule label="blockElem">

<ref label="numberedItemizedList"/>

</hedgeRule>

8.2.2 Prohibition of label sharing by hedgeRule and elementRule

hedgeRuleand elementRule are prohibited from sharing a label. The following
example is a syntax error.

<hedgeRule label="foo">

<ref label="bar"/>

</hedgeRule>

<elementRule role="foo" label="foo">

<empty/>

</elementRule>

48

8.2.3 Multiple elementRule elements sharing the same la-
bel

Multiple elementRules can specify the same label for the label attribute.
Moreover, the attribute role of multiple elementRules may be identical.

In the following example, two elementRules specify section as the value
of the role attribute. Since neither specify the label attribute, section is
assumed as the value of this attribute.

<tag name="section"/>

<elementRule role="section">

<ref label="para" occurs="*"/>

</elementRule>

<elementRule role="section">

<choice occurs="*">

<ref label="para"/>

<ref label="fig"/>

</choice>

</elementRule>

In the case that multiple elementRules exist for a single label, at least one
of them are required to hold.

Consider the following section element. The first elementRule and the
second elementRule holds for this element. Thus, we can attach the section
label.

<section><para/></section>

The following section element contains a fig element, and thus only the
second elementRule holds. Since one holding elementRule is sufficient, we can
again attach the section label to this element.

<section><para/><fig/><para/></section>

Let us consider advantages of allowing more than one elementRule for a
single label. Suppose that we already have a module and that we are going to
modify this module so that more documents become legitimate.

In the traditional approach, we have to modify an existing elementRule.
We cannot guarantee that what was legitimate is still legitimate after such
modification.

49

In RELAX, we do not have to revise existing elementRules, but we only
have to add more elementRules. In this approach, what was legitimate is
guaranteed to be legitimate.

In the previous example, the initial plan was to allow only paras as contents
of section. The first elementRule was written for this purpose. Later, the
second elementRule was added so as to allow fig as contents of section. Since
the first elementRule is still active, none of the then-legitimate documents has
become illegitimate.

8.3 Summary

If you have struggled to create large DTDs, STEP 7 would probably look at-
tractive. Weak points of DTD can be easily addressed in RELAX. Enjoy and
RELAX!

50

Chapter 9

STEP 8: tag and attPool,
revisited

$Id: step8.sdoc 1.15 2000/08/26 14:03:04 murata Exp murata $
In STEP 2, tag was compared to an attribute-list declaration and attPool

was compared to parameter entities describing attributes. Actually, RELAX
has a much more generalized framework.

9.1 The role attribute of tag elements

On top of the name attribute, tag elements can have the role attribute. In
this section, we first consider motivations for this extension, and then introduce
this attribute.

9.1.1 Switching content models depending on attribute
values

Often, we would like to attach different content models to the same tag name,
depending on attribute values. For example, we might want to switch content
models of val element, depending on the type attribute. If the attribute value
is integer, the content model is a reference to the datatype integer. If it is
string, the content model is a reference to the datatype string.

<!-- This is legal. -->

<val type="integer">10</val>

<!-- This is also legal. -->

<val type="string">foo bar</val>

<!-- This is illegal. -->

<val type="integer">foo bar</val>

51

Thus, we would like to switch content models (shown below) depending on
whether the attribute value is integer or string.

<!-- Case 1: type="integer" -->

<elementRule role="val" type="integer"/>

<!-- Case 2: type="string" -->

<elementRule role="val" type="string"/>

However, as long as we use features covered in STEPs 0 thru 7, we have
to attach content models to tag names. Attribute values are not taken into
consideration. Thus, no matter what the value of the type attribute is, the
same elementRule is used.

9.1.2 Constraints represented by tag elements

On top of the name attribute, tag elements can have the role attribute. tag
elements take the following form. While the name attribute specifies tag names,
the role attribute specifies roles.

<tag name="tag-name" role="role-name">

...

</tag>

A tag element attaches a role to a collection of constraints on tag names and
attributes. When a start tag (or empty-element tag) satisfies these constraints,
this tag plays the specified role.

For example, consider a tag element as below:

<tag name="val" role="val-integer">

<attribute name="type" type="NMTOKEN" required="true">

<enumeration value="integer"/>

</attribute>

</tag>

This tag element specifies that the tag name be val and the type at-
tribute have the value integer. If a start tag (or empty-element tag) satisfies
this constraint, this tag plays the val-integer role.

<val type="integer">

52

In the following tag element, the constraint on the type attribute is that
the attribute value be string and the role name is val-string.

<tag name="val" role="val-string">

<attribute name="type" type="NMTOKEN" required="true">

<enumeration value="string"/>

</attribute>

</tag>

The following start tag does not play the val-integer role, but plays the
val-string role.

<val type="string">

Attributes may occur even if they are not specified by tag elements. For
example, the following start tag has an attribute unknown, which is not specified
by the previous tag element. This start tag still plays the role val-string, but
warning message will be issued.

<val type="string" unknown="">

How should we interpret those tag elements without the role attribute such
as those in STEPs 1 thru STEP 7? When the role attribute is omitted, it is
assumed to have the value of the name attribute. Thus, the following two tag
elements are semantically identical.

<tag name="foo">

<attribute name="bar" type="int"/>

</tag>

<tag name="foo" role="foo">

<attribute name="bar" type="int"/>

</tag>

53

9.1.3 The role attribute of elementRule elements

The role attribute of elementRule elements do not specify tag names, but
rather specifies roles. Thus, we can switch hedge models for the same tag name,
depending on attribute values.

If we use roles val-string and val-integer shown in the previous exam-
ple, we can have two elementRules for start tags of the tag name val. An
elementRule that references to the val-string role is concerned with start
tags whose type attribute has the value string. An elementRule that refer-
ences to the val-integer role is concerned with start tags whose type attribute
has the value integer.

<!-- Case 1: type="integer" -->

<tag name="val" role="val-integer">

<attribute name="type" type="NMTOKEN" required="true">

<enumeration value="integer"/>

</attribute>

</tag>

<elementRule role="val-integer" label="val" type="integer"/>

<!-- Case 2: type="string" -->

<tag name="val" role="val-string">

<attribute name="type" type="NMTOKEN" required="true">

<enumeration value="string"/>

</attribute>

</tag>

<elementRule role="val-string" label="val" type="string"/>

Note that two tag elements specify the tag name val and the type attribute.
In RELAX, tag elements are not declarations, which may appear once and only
once, but rather constraints, which may appear more than once.

9.1.4 Prohibition of references by ref elements

Roles referenced by ref elements may not be described by tag elements. If they
are described, they must be described by attPool elements.

In the next example, a ref element references to the foo role, which is
described by a tag element. This example is thus a syntax error.

<tag name="foo"/>

<attPool role="bar">

<ref role="foo"/>

</attPool>

54

9.1.5 The none datatype, revisited

STEP 3 introduced the none datatype. none is useful for switching content
models depending on the presence or absence of an attribute.

For example, suppose that <div class="sec"> and <div> require differ-
ent content models. A role for the former, say divSec, can be described as
below:

<tag name="div" role="divSec">

<attribute name="class" type="string">

<enumeration value="sec"/>

</attribute>

</tag>

How do we describe a role for <div>, say divWithoutClass? One might
think that the following example would work.

<tag name="div" role="divWithoutClass"/>

However, this description allows divWithoutClass even for <div class="sec">.
Although the ”undeclared attribute” message is issued, this start tag is assumed
to play both roles. 1

To explicitly disallow the class attribute, we have to use the none datatype
and write as below:

<tag name="div" role="divWithoutClass">

<attribute name="class" type="none"/>

</tag>

Since no character strings are permitted by the none datatype, any value
specified for the class attribute will prevent the divWithoutClass role.

9.2 attPool elements

Unlike parameter entitles of DTDs, attPool elements are not expanded. tag
elements and attPool elements are very similar and equally important in RE-
LAX.

1RELAX allows tags to play roles even if they have undeclared attributes. There are two
reasons for this design. First, traditional XML processors continue validation even if they
encounter undeclared attributes. Second, HTML allows undeclared attributes.

55

9.2.1 Constraints represented by attPool

We have observed that a tag element attaches a role to a collection of constraints
on tag names and attributes. The only difference between attPool and tag is
that attPool elements do not contain constraints on tag names. In other words,
an attPool element attaches a role to a collection of constraints on attributes.

Consider the following attPool.

<attPool role="info">

<attribute name="class" required="true">

<enumeration value="informative"/>

</attribute>

</attPool>

This attPool element specifies that the class attribute is specified,
and its value is "informative" and attaches the info role to this constraint.
There are no constraints on tag names. Because of this attPool, the following
empty-element tag plays the info role.

<some class="informative"/>

Just like tag, attributes not specified by attPool may occur. For example,
the following start tag plays the info role.

<some class="informative" unknown=""/>

9.2.2 Prohibition of references by elementRule elements

Roles referenced by the role attribute of elementRule elements may not be
described by attPool elements. If they are described, they must be described
by tag elements.

The following elementRule describes the info role, which is described by
an attPool element. Thus, this example is a syntax error.

<attPool role="info"/>

<elementRule role="info" label="informative" type="emptyString"/>

56

9.3 Prohibition of role sharing by multiple tag

or attPool elements

Multiple tag elements cannot share a single role.
In the following example, two tag elements share the bar role. Thus, this

example is a syntax error.

<tag name="foo1" role="bar">

<attribute name="a" type="string"/>

...

</tag>

<tag name="foo2" role="bar">

<attribute name="b" type="string"/>

...

</tag>

In the next example, a role and tag name are both shared by two tag ele-
ments. This example is also a syntax error.

<tag name="foo" role="foo">

<attribute name="a" type="string"/>

...

</tag>

<tag name="foo" role="foo">

<attribute name="b" type="string"/>

...

</tag>

Even when the role attribute is omitted and the value of the name attribute
is used, role sharing is prohibited. The two tag elements in the next example
are identical to the two tag elements shown above. Thus, this example is also
a syntax error.

<tag name="foo">

<attribute name="a" type="string"/>

...

</tag>

<tag name="foo">

<attribute name="b" type="string"/>

...

</tag>

57

In the following example, two attPool elements share the bar role. Thus,
this example is a syntax error.

<attPool role="bar">

<attribute name="a" type="string"/>

...

</attPool>

<attPool role="bar">

<attribute name="b" type="string"/>

...

</attPool>

In this last example, a tag element and an attPool element share the bar
role. Thus, this example is also a syntax error.

<attPool role="bar">

<attribute name="a" type="string"/>

...

</attPool>

<tag role="bar" name="foo">

<attribute name="b" type="string"/>

...

</tag>

9.4 Summary

In STEPs 0 thru 7, we have assumed that a tag element declares a tag name
and attributes. Actually, a tag element attaches a role to a collection of
constraints on tag names and attributes. In examples in STEPs 1 thru 7, roles
and tag names coincide, but they are not always identical. In most cases, there
are one-to-one correspondences among labels, roles, and tag names. But this is
not always the case.

The following table summarizes syntactical constructs that describe or ref-
erence to tag names, labels, or roles.

The following table summarizes whether tag names, labels, and roles occur
in XML documents.

In traditional DTDs, it has been impossible to switch content models depend-
ing on attribute values, but RELAX has made it possible. The only required
extension is the role attribute. This demonstrates simplicity and descriptive
power of RELAX. Enjoy and RELAX!

58

Syntactical constructs tag names, labels, or roles
The role attribute of elementRule references to roles described by tag
The label attribute of elementRule description of labels
The label attribute of hedgeRule description of labels
The label attribute of ref reference to labels described by elementRule
The label attribute of hedgeRef reference to labels described by hedgeRule
The name attribute of tag description of tag names
The role attribute of tag description of roles
The role attribute of attPool description of roles
The role attribute of ref reference to roles described by attPool

Types of names In XML instances In RELAX modules
tag names occur occur as part of clauses
roles do not occur occur in clauses
labels do not occur occur in production rules

59

Chapter 10

STEP 9: Hedge content
model element

RELAX allows element elements as permissible hedge models. They are mere
syntax sugar, and are expanded as ref, elementRule, and tag elements. In
this section, we show motivation behind element elements and then present the
mechanism.

10.1 Simulating programming languages and database
languages

RELAX is an extension of DTDs, and is based on a grammatical data model.
This model is very different from data models of programming languages and
database systems. On the other hand, RELAX should be able to mimic decla-
rations in programming languages and schemata in database languages.

In programming languages, we declare variables and attach datatypes to
them. In the next example, variables x and y are declared and a datatype int
is attached to them.

public class Point {
int x;

int y;

}

When a variable x is declared in another class, it may have a different type.
In the next example, a datatype float is attached to x of the class Foo.

public class Foo {
float x;

}

60

10.2 The element element

The element element is an element hedge model that specifies both a variable
name and type name. An element element always has the name attribute and
type attribute. Furthermore, it may have the occurs attribute.

<element name="tag-name" type="datatype-name"/>

<element name="tag-name" type="datatype-name" occurs="*"/>

Use of element elements allows tag and elementRule elements such as
below:

<tag name="Point"/>

<elementRule role="Point">

<sequence>

<element name="x" type="integer"/>

<element name="y" type="integer"/>

</sequence>

</elementRule>

A Point such that x=100 and y=200 can be represented by an XML docu-
ment as below:

<Point>

<x>100</x>

<y>200</y>

</Point>

61

10.3 Expansion to ref, elementRule, and tag el-
ements

The element element is merely syntax sugar. Each element element in a hedge
model is replaced by a ref element, while an elementRule element and tag
element are generated.

The elementRule in the previous subsection is duplicated below. Two
element elements in this example have the type attribute. Let us consider
how these element elements are expanded.

<elementRule label="Point">

<sequence>

<element name="x" type="integer"/>

<element name="y" type="integer"/>

</sequence>

</elementRule>

Each of the element elements is replaced by a ref element. Furthermore, an
elementRule element and tag element are generated for each element element.
As a hedge model, each elementRule has a reference to the datatype specified
by the type attribute of the original element element.

<elementRule label="Point">

<sequence>

<ref label="Point$1"/>

<ref label="Point$2"/>

</sequence>

</elementRule>

<elementRule role="Point$1" label="Point$1" type="integer"/>

<tag role="Point$1" name="x"/>

<elementRule role="Point$2" label="Point$2" type="integer"/>

<tag role="Point$2" name="y"/>

When an element element has the occurs attribute, it is copied to the
generated ref element. For example, suppose that the elements in the first
elementRule specifies occurs="?" (see below).

<elementRule label="Point">

<sequence>

<element name="x" type="integer" occurs="?"/>

<element name="y" type="integer" occurs="?"/>

</sequence>

</elementRule>

62

The result of expansion is as below:

<elementRule label="Point">

<sequence>

<ref label="Point$1" occurs="?"/>

<ref label="Point$2" occurs="?"/>

</sequence>

</elementRule>

<elementRule role="Point$1" label="Point$1" type="integer"/>

<tag role="Point$1" name="x"/>

<elementRule role="Point$2" label="Point$2" type="integer"/>

<tag role="Point$2" name="y"/>

10.4 Expansion procedure

In this section, we summarize expansion of element elements.

10.4.1 Generating ref elements

A ref element is generated. As the value of its label attribute, we generate a
label that does not conflict with any other label. If the element has the occurs
attribute, it is copied to the generated ref element.

10.4.2 Generating elementRule elements

An elementRule element is generated. As the value of its role attribute, we
generate a role that does not conflict with any other role. The value of the
label attribute is the label generated together with the ref element. As the
hedge model of this elementRule, the type attribute of the element element is
copied.

10.4.3 Generating tag elements

A tag element is generated. Its role attribute specifies the role automatically
generated together with the elementRule. The name attribute of the generated
tag specifies the value of the name attribute of the original element element.

10.5 Summary

For users of programming languages and database languages, description by
element elements probably look very natural and easy to understand. Enjoy
and RELAX!

63

Chapter 11

STEP 10: tag embedded in
elementRule

$Id: step10.sdoc 1.8 2000/11/01 13:46:38 murata Exp $
In this section, we consider embedding of tag elements in elementRule

elements.

11.1 Describing attributes and hedge models to-
gether

In STEPs 0 thru 9, attributes and tag names are separated from hedge mod-
els. Attributes and tag names are described by tag and attPool elements,
while hedge models are described by elementRule and hedgeRule elements.
An elementRule references to a tag via a role, and the tag may in turn refer-
ence to attPool elements.

When an elementRule and a tag is so closely related, it may be convenient
to merge them into a single element rather than separating them.

As an example of elementRule-tag separation, we duplicate an example in
STEP 8 below.

<!-- Case 1: type="integer" -->

<tag name="val" role="val-integer">

<attribute name="type" type="NMTOKEN" required="true">

<enumeration value="integer"/>

</attribute>

</tag>

<elementRule role="val-integer" label="val" type="integer"/>

<!-- Case 2: type="string" -->

64

<tag name="val" role="val-string">

<attribute name="type" type="NMTOKEN" required="true">

<enumeration value="string"/>

</attribute>

</tag>

<elementRule role="val-string" label="val" type="string"/>

Suppose that roles val-integer and val-string are referenced from these
two elementRule elements only. Rather than introducing two names val-integer
and val-string for referencing, authors might want to directly embed tag el-
ements within elementRule elements.

<!-- Case 1: type="integer" -->

<elementRule label="val" type="integer">

<tag>

<attribute name="type" type="NMTOKEN" required="true">

<enumeration value="integer"/>

</attribute>

</tag>

</elementRule>

<!-- Case 2: type="string" -->

<elementRule label="val" type="string">

<tag>

<attribute name="type" type="NMTOKEN" required="true">

<enumeration value="string"/>

</attribute>

</tag>

</elementRule>

An advantage of this style is that roles do not need names. Before this
rewrite, we needed names which are different from the tag names or labels.
Omission of these names enhance readability.

Some people find it attractive to describe attributes and hedge models to-
gether. For example, points with the x-coordinate and y-coordinate can be rep-
resented in two alternative manners. The first example uses attributes, while the
second uses elements. Their differences are minor and can be easily rewritten
from each other.

<elementRule label="point" type="emptyString">

<tag>

<attribute name="x" type="integer"/>

65

<attribute name="y" type="integer"/>

</tag>

</elementRule>

<elementRule label="point">

<tag/>

<sequence>

<element name="x" type="integer"/>

<element name="y" type="integer"/>

</sequence>

</elementRule>

An elementRule containing a tag may not have the role attribute. The
label attribute is mandatory, instead.

An embedded tag may not have the role attribute. The name attribute is
permitted, but it is not present in this example.

11.2 Handling of embedded tag elements

An embedded tag element is moved from the elementRule and placed as a
sibling element. We show how the first example in this STEP is handled.

<elementRule label="val" type="integer">

<tag>

<attribute name="type" type="NMTOKEN" required="true">

<enumeration value="integer"/>

</attribute>

</tag>

</elementRule>

First, we generate a role that does not conflict with any other role. In this
example, we generate role val$1.

Next, we move the embedded tag element from the elementRule and place
as a sibling element. We then add the role attribute and specify the generated
role as the attribute value.

Only when this tag element does not have the name attribute, we introduce
this attribute. As the attribute value, we use the value of the label attribute
of the elementRule element. In this example, we specify "val" as the value of
the name attribute.

Finally, we add the role attribute to the elementRule and specify the role
generated above.

66

<elementRule label="val" type="integer" role="val$1">

</elementRule>

<tag name="val" role="val$1">

<attribute name="type" type="NMTOKEN" required="true">

<enumeration value="integer"/>

</attribute>

</tag>

11.3 Summary

To describe elements and attributes together, embedded tag elements provides
concise and comprehensible description. Enjoy and RELAX!

67

